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EXTREME VALUE STATISTICS FOR DAMAGE DETECTION IN 

MECHANICAL STRUCTURES 
 

 

Keith Worden1, David W. Allen, Hoon Sohn, Daniel W. Stinemates and Charles R. Farrar 

Engineering Sciences and Applications Division 

Weapons Response Group 

Los Alamos National Laboratory 

New Mexico, USA 

 

Abstract: The first and most important objective of any damage identification algorithm is to 

ascertain with confidence if damage is present. Considering most real world applications of 

damage detection, this detection must be accomplished in an unsupervised learning mode. Here, 

the term “unsupervised learning” implies that data from a damaged state are not used to aid in 

the damage detection process. Methods have been proposed for unsupervised damage detection 

based on ideas of statistical process control, which monitors such parameters as the sample mean 

and standard deviation. Statistical process control is currently based on the assumption that the 

underlying distribution of data is Gaussian. However, the assumption of normality imposes 

potentially misleading behavior on the extreme values of the data, namely, those points in the 

tails of the distribution. As the problem of damage identification specifically focuses attention on 

these tails, the assumption of normality is likely to lead any analyses astray. An alternative 

approach can be based on extreme value statistics. This branch of statistics was developed to 

specifically model behavior in the tails of the distribution of interest. This report shows a number 

of approaches to extreme value analysis contrasted with the standard approach where it is 

assumed that the damage-sensitive features are normally distributed. Both approaches are applied 

to numerical and experimental data to illustrate the difference between the two methods. 

                                                 
1 On study leave from Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 

3JD, UK. E-mail: k.worden@sheffield.ac.uk 



 

2

1. Introduction 

This report is concerned with Statistical Process Control (SPC) in an unsupervised learning 

mode, which is the first level of damage identification. When applied to structural health 

monitoring (SHM), unsupervised learning means that data from the damaged condition are not 

available to aid in the damage detection process.  

The objective of unsupervised SPC is to establish a model of the system’s normal condition 

and thereafter to signal statistically significant departures from this condition. A significant 

change in the system is an indication of damage. This objective can be accomplished in several 

ways. Some methods include the use of the control chart (Fugate et al., 2001) based on the mean 

and standard deviation of a feature, or the sequential probability ratio test (Gosh, 1970) that 

monitors a probability ratio between undamaged and damaged cases. The main limitation of all 

of these methods is that they make unwarranted assumptions about the nature of the feature 

distribution tails. These assumptions are potentially hazardous, because extreme events that 

reside in the tails of the normal condition are likely to be mistaken for damage. More 

specifically, SPC relies on a model based on central statistics (the sample mean and standard 

deviation) and the analysis is largely insensitive to the structure of the tails. Another way of 

regarding this problem is as a question of setting appropriate control limits or thresholds. 

The major problems with modeling the undamaged condition of a system are that the 

functional form of the distribution is often unknown and there are an infinite number of 

candidate distributions that may be appropriate for the prediction applications. Furthermore, in 

some cases, only extreme values of events may be recorded due to sensor or storage limitations. 

For example, seismic stations are primarily interested in recording strong ground motion, motion 

beyond certain magnitude with sufficient strength to affect people and their environment 

(Kramer, 1996). The measurements of peak strains or accelerations are enough to monitor the 

base isolation systems of buildings and bridges (Takahira and Mita, 2002). In the current 

procedures, a knowledgeable operator makes a choice among the infinite distributions and then 

estimates parameters based on training data. This process is largely subjective. Any choice of the 

distribution and parameters will constrain the behavior of the tails to that prescribed distribution. 
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In fact, there is a large body of statistical theory that is explicitly concerned with modeling 

the tails of distributions, and these statistical procedures can be applied to the problem of SPC. 

The relevant field is referred to as extreme value statistics (EVS), a branch of order statistics. 

There are many excellent textbooks and monographs in this field. Some are considered classics 

(Gumbel, 1958; Galambos, 1978), and others are more recent (Embrechts et al., 1997; Kotz and 

Nadarajah, 2000; Reiss and Thomas, 2001). Castillo (1988) is notable in its concern with 

engineering problems in fields like meteorology, hydrology, ocean engineering, pollution 

studies, strength of materials, etc. Roberts (1998 and 2000) introduced the ideas of EVS into 

novelty detection and applied them in the biosignal processing context. Although EVS has been 

widely used, there has been little application of these techniques to SPC and damage 

identification. This report illustrates the use of EVS in their own right and not as another way of 

looking at Gaussian distributions in an effort to avoid such assumptions. 

The layout of this report is as follows: Section 2 provides an introduction to EVS, followed 

by section 3, which describes parameter estimation techniques for fitting EVS distributions to 

extreme value data using simulated examples. Section 4 shows a comparison between SPC 

thresholds calculated using Gaussian assumptions with those calculated using EVS for three 

different distributions. Sections 5 and 6 explore the integration of EVS into damage detection for 

two physical structures, a three-story frame structure and an eight degree-of-freedom (DOF) 

spring-mass system. Sections 7 and 8 finish the report with the summary and conclusions of the 

work. Two appendices are included to present various computer programs used to estimate 

parameters for EVS distributions and to give a more in depth view of statistical pattern 

recognition techniques used in the analysis. 

2. Extreme Value Statistics 

The Gaussian distribution occupies its central place in statistics for a number of reasons; not least 

is the central limit theorem (Benjamin and Cornell, 1970). The central limit theorem states that if 

{ }nXXX ,...,, 21  is a set of random variables with an arbitrary distribution, the sum variable 

nXXXX +++=Σ K21  will have a Gaussian distribution as ∞→n . Although this theory is 

arguably the most important limiting theorem in statistics, it is not the only one. If the problem at 
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hand is concerned with the tails of distributions, there is another theorem that is more 

appropriate.  

Suppose that one is given a vector of samples { }nXXX ,,, 21 K  from an arbitrary parent 

distribution. The most relevant statistic for studying the tails of the parent distribution is the 

maximum operator, { }( )nXXX ,,,max 21 K , which selects the maximum value from the sample 

vector. Note that this statistic is relevant for the right tail of a univariate distribution only. For the 

left tail, the minimum should be used. The pivotal theorem of EVS states that in the limit as the 

number of vector samples tends to infinity, the induced distribution on the maxima of the 

samples can only take one of three forms: Gumbel, Weibull, or Frechet (Fisher, 1928). The rest 

of this section will be concerned with elaborating on this fact. 

If the values of the sequence nXXX ,,, 21 K  are arranged in ascending 

order nnnn XXX ::2:1 ,,, K , the thr  element of this sequence nrX :  is called the thr  order statistic. In 

order statistics it is customary to include the total sample size, n, in the notation. The basic 

question that now arises is what are the distributions of the order statistics, in particular, the 

minimum, nX :1 , and the maximum, nnX : .  

Following Castillo (1988), let )(xmn  be the number of samples for which .: xX nr ≤  Each 

time one chooses a value nrX :  from the sample, one is conducting a Bernoulli experiment, an 

experiment that has one of two outcomes, with a probability )(xF , the Cumulative Distribution 

Function (CDF), that xX nr ≤: , and the complementary probability, ))(1( xF− , that xX nr >: . The 

CDF of )(xmn  is therefore a binomial distribution with )(kF k  denoting the probability of 

success, 

knk
r

k
nxm xFxF

k
n

rxmrF
n

−

=

−

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If one is concerned with the maximum of the sample, the relevant order statistic is nnX :  and 

the relevant distribution is, 

)()(
:

xFxF n
X nn

=  (3) 

If one is concerned with the minimum of the sample, the relevant order statistic is nX :1  and the 

appropriate distribution is, 
n

X xFxF
n

)](1[1)(
:1

−−=  (4) 

Concentrating now on the maximum, let ∞→n , then the limit distribution for the maximum 

will satisfy 

1)(If   
1)(If  

0
1

)(lim
<
=



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=
∞→ xF

xF
xF n

n
 (5) 

This distribution does not make sense because a CDF is developed on the assumption that it is 

continuous, but here the limit is discontinuous. The way around this discontinuity is to normalize 

the independent variable with a sequence of constants ( xbax nn +→ ) in such a way that,  

)()(lim xHxbaF nn
n

n
=+

∞→
 (6) 

where H(x) is a non-degenerate limit function. In fact, it is required that H(x) be continuous. The 

situation for minima is similar: A sequence of normalizations is required such that, 

)()](1[1lim xLxdcF n
nnn

=+−−
∞→

 (7) 

and L(x) is a non-degenerate continuous limit function. 

The fundamental theorem of EVS states (Fisher and Tippett, 1928): 

Theorem: Feasible limit distributions for maxima 

The only three types of non-degenerate distributions )(xH  satisfying Equation (6) are 
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Or, in the appropriate form for minima, 

Theorem: Feasible limit distributions for minima 

The only three types of non-degenerate distributions )(xL  satisfying Equation (7) are 
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where λ , α , and β  are the model parameters that are estimated from the data. 

Now, given samples of maximum data from a number of n-point populations, it is possible to 

select an appropriate limit distribution and fit a parametric model to the data. It is also possible to 

fit models to portions of the parent distribution’s tails as these models are equivalent in the tail to 

the appropriate extreme value distribution. Once the parametric model is obtained, it can be used 
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to compute effective thresholds for SPC based on the true statistics of the data as opposed to a 

blanket assumption of a Gaussian distribution. 

The next section illustrates the types of analysis that are possible on a number of synthetic data 

sets. 

3. Selection of Extreme Value Distributions and Parameter 

Estimation Techniques 

Based on the EVS theories presented in the previous section, this section presents techniques for 

selecting a proper extreme value distribution for given data sets and estimating the parameters 

associated with the chosen distribution. This section refers to a number of MATLAB 

(MathWorks, 1998) programs that are included in Appendix A. These programs are translations 

of the original BASIC routines in Castillo (1988). 

3.1. Generation of Data 

Data from various extreme value distributions can be simulated using a standard approach. If 

)(xF  is the CDF of the distribution of interest and y  is a uniform deviate, random variable with 

a unit probability density function over the interval [0,1], then )(1 yF −  has the required 

distribution. This property is coded in the routine simulationPD (Appendix A). The routine takes 

advantage of a useful property of order statistics conditional distributions. It can be shown for 

two consecutive order statistics that (Castillo, 1988)  

i

XX xF
xFxxF

nini 







=

+ )(
)()(

2

1
21:1:

 (14)

and this fact can be used to generate the samples in decreasing order. 

3.2. Probability Paper 

Once a population of samples is obtained, it is a simple matter to plot the empirical CDF. The 

data are first placed in increasing order. The data are now the order statistic nrX : . One associates 

with each order statistic a plotting position or assignment of probability. A naïve approach 
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assigns the value nr /  to nrX : . However, this assignment does not behave well under certain 

nonlinear transformations of the data that will be described later. A more robust choice is to 

assign the value nr /)5.0( −  to nrX : . There are numerous different formulae for plotting 

positions; several are represented here and are coded in the function draw_samplesPD 

(Appendix A). 

The purpose of the function draw_samplesPD is to show the empirical CDF in a number of 

different coordinate systems, each appropriate for a given extreme value distribution. To 

illustrate, consider the Gumbel CDF for maxima in Equation (10). Let )(0,3 xHy =  be the 

formula for the CDF. If one makes the nonlinear transformation g(x) and h(y) of the x and y 

coordinates, 

)]ln(ln[)(
)(

yyh
xxg

−−==
==

η
ξ

 (15)

where ln(y) represents the natural logarithm, then the new coordinates ζ and η satisfy, 

δ
λξη −

=
 

(16)

The Gumbel CDF will appear as a straight line in this coordinate system. Such a plot will be 

referred to as “on Gumbel probability paper” or “in Gumbel coordinates”. Figure 1 shows the 

empirical CDF for 1000 data points generated from the Gumbel maximum distribution with 

50=λ  and .10=δ  In Gumbel maximum coordinates one obtains a straight line as required. The 

final point in Figure 1 and some subsequent figures seem to stray greatly from the rest of the 

data. This aberration may be an artifact of slow convergence to the extreme value distribution for 

the most extreme points. 

The function draw_samplesPD also allows the user to superimpose a linear regression line 

together with the 95% confidence interval on the empirical CDF. If a straight line adequately 

models the data from an unknown distribution in Gumbel maximum coordinates, then this 

modeling provides support for the hypothesis that the unknown distribution is Gumbel 

maximum. A similar transformation carries data from the Gumbel minimum distribution into a 

coordinate system where the empirical CDF is a straight line.  
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Figure 2 shows data from a Weibull maximum distribution ( 2  ,100  ,50 === βδλ ) plotted 

in Gumbel maximum coordinates. As one might expect, the result is not a straight line. In fact, 

there is definite curvature (concavity). Figure 3 shows data from a Frechet maximum distribution 

( 5  ,30  ,0 === βδλ ) plotted in Gumbel maximum coordinates. In this case, the curvature is 

not as marked as Figure 2 but is clearly in the opposite sense (convexity). 

This curvature is one of the tests for the limiting distribution for maxima. First, the empirical 

CDF is plotted in Gumbel coordinates for maxima. The user then makes an assessment as to 

whether the curvature deviates significantly from unity, and the limit distribution is assigned 

accordingly. The routine selectionEV (Appendix A) computes the curvatures in this fashion. 

However, its use is somewhat limited without appropriate confidence intervals for the Gumbel 

case. 
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Figure 1: The empirical CDF for Gumbel maximum 
distributed data in Gumbel maximum coordinates. 
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Figure 2: The empirical CDF for Weibull maximum 
distributed data in Gumbel maximum coordinates. 
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Figure 3: The empirical CDF for Frechet maximum 
distributed data in Gumbel maximum coordinates. 
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If the data are known to come from a Weibull distribution for maxima as in Equation (9) with 

the empirical CDF )(,2 xHy β= , then the transformation,  

)]ln(ln[)(
)ln()(

yyh
xxg

−−==
−−==

η
λξ

 (17)

carries the empirical CDF into the straight line, 

)ln( δξβη −=  (18)

The difference in this situation is that the transformation requires an a priori estimate of the 

location parameter λ . 

Figure 4 shows the data from the Weibull distribution for maxima shown in Figure 2, but this 

time plotted in Weibull coordinates with the correct location parameter used in the 

transformation ( λ  = 50) . The required straight line is obtained. If an incorrect λ  had been used, 

the plot would not have been linear. It would be possible to design an optimization procedure to 

assign the λ  value that makes the plot in Weibull coordinates maximally linear. However, it 

proved convenient here to simply vary λ  by trial-and-error until a satisfactory line was obtained. 

If the data are known to come from a Frechet distribution for maxima as in Equation (8) with 

the empirical CDF )(,1 xHy β= , then the transformation, 

)]ln(ln[)(
)ln()(
yyh

xxg
−−==

−==
η

λξ
 (19)

carries the empirical CDF into the straight line, 

)ln( δξβη −=  (20)

As before, an a priori estimate of λ  is required. Figure 5 shows the data from the Frechet 

distribution for maxima shown in Figure 3 but this time plotted in Frechet coordinates with the 

correct location parameter used in the transformation )0( =λ . Once again, the required straight 

line is obtained. 
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Figure 4: The empirical CDF for Weibull maximum 
distributed data in Weibull maximum coordinates (with 

the appropriate λ ). 
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Figure 5: The empirical CDF for Frechet maximum 
distributed data in Frechet maximum coordinates (with 

the appropriate λ ). 
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3.3. Parameter Estimation 

Having established the appropriate limit distribution, the next stage in the analysis is to estimate 

parameters of the chosen distribution. The function estimate (Appendix A) can be used to fit the 

best parameters for both the least-squares and maximum likelihood cases. Because the function 

estimate only fits parameters to one canonical model form, the Gumbel distribution for minima, 

it should be noted that the following pre-processing is required before the actual curve fitting. 

First, if the data are distributed as maxima, the transformations xx −→  and λλ −→  carry 

each maximum CDF into the corresponding minimum CDF at least as far as optimization is 

concerned.  

Next suppose the data have the Weibull distribution for minima. Then, the transformation 

)ln( λ−= XY  carries the Weibull distribution X  into the Gumbel distribution Y  with the 

following relations between the parameters, 

)ln( WG δλ =  and 
W

G β
δ 1

=  (21)

where the subscripts G and W denote Gumbel and Weibull distributions, respectively. As in the 

plotting problem, this transformation requires an a priori estimate of λ , but this transformation 

can be obtained by optimizing the linearity of the empirical CDF plot in Weibull coordinates. 

If the data have the Frechet distribution for minima, the transformation )ln( XY −−= λ  

carries the Frechet distribution X  into the Gumbel distribution Y , with the following relations 

between the parameters, 

)ln( FG δλ −=  and 
F

G β
δ 1

=  (22)

where the subscript F denotes a Frechet distribution. This relation means that the parameter 

estimation problem is reduced to fitting the data to the limit distribution of the form in Equation 

(13). 
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The optimization estimates the parameters λ  and δ , by minimizing some error criterion. 

The most straightforward error criterion is the weighted least-squares method, which seeks to 

minimize the following objective function G, 

2
0,3

1
)],;([ δλii

n

i
i xLpwG −= ∑

=

 (23)

where the training data are the points on the empirical CDF ( ){ }nipx ii ,,1,, K= , spi '  are an 

appropriate choice of plotting positions, and iw ’s are a set of weights. Although there are various 

possibilities, Castillo (1988) recommends, 

i
i p

w 1
=

 
(24)

With these weights, the method is referred to as least-squares probability relative error 

(LSPRE). The other approach to optimization is Maximum Likelihood (ML). The reader is 

referred to Castillo (1988) for details, although the method is available as part of the function 

estimate.  

For the Gumbel distribution, a very simple but often inaccurate approach called the method 

of moments is available. It is possible to show that the mean, x , and the variance, σ2, of the 

Gumbel distribution maxima and minima are related to λ and δ, 

γδλ −=x  and 
6

22
2 δπσ =  (25)

where γ  is Euler’s constant ( 57772.0≈ ). From the above mean and sample variance, the 

moment estimates of the parameters can be calculated as: 

π
σδ 6

=  and γδλ += x  (26)

Figure 6 shows the LSPRE curve-fit to the Gumbel maximum data shown in Figure 1. The 

estimated parameters λ = 50.12 and δ = 10.16 compare favorably with the exact values of λ = 50 

and δ = 10, respectively. The ML estimator gave estimates of 50.03 and 10.38, respectively. 
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Figure 7 shows the LSPRE curve-fit to the Weibull data in Figure 4. The correct value of 

50=λ  was assumed. The parameter estimates were δ = 99.42 and β = 1.97, compared to the 

true values of 100 and 2. The corresponding ML estimates were 99.85 and 1.93, respectively. 

Figure 8 shows the LSPRE curve-fit to the Frechet data in Figure 5. The correct value of λ = 

0 was assumed. The parameter estimates were δ = 30.53 and β = 5.38, compared to the true 

values of 30 and 5. The corresponding ML estimates were 29.92 and 4.82, respectively. A 

summary of the estimation results can be found in Table 1. 
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Figure 6: LSPRE curve-fit to Gumbel maxima data in Figure 4. 

Table 1: Summary of Parameter Estimation Exercise for Gumbel, Weibull and Frechet Distributions. 
λ  δ  β   

Exact LSPRE* ML** Exact LSPRE ML Exact LSPRE ML 

Gumbel 10.00 10.16 10.38 10.00 10.16 10.38 N/A N/A N/A 

Weibull 50.00 
Exact 
value 
used 

Exact 
value 
used 

100.0 99.42 99.85 2.00 1.99 1.93 

Frechet 0.00   30.00 30.35 29.95 5.00 5.38 4.82 

*Least-Squares Probability Relative Error (LSPRE) method: This method requires an estimate of the λ parameter for 
Weibull and Frechet distributions. In this case the known exact value is used. 

**Maximum Likelihood (ML) method. This method requires an estimate of the λ parameter for Weibull and Frechet 
distributions. In this case the known exact value is used. 
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Figure 7: LSPRE curve-fit to Weibull maxima data in Figure 4. 
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Figure 8: LSPRE curve-fit to Frechet maxima data in Figure 5.  
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4. Numerical Examples 

Simulated random signals from three different distributions are used to demonstrate the 

usefulness of EVS in accurately modeling the tails without any assumptions of the parent 

distribution. In each example, the 99% confidence interval for SPC analysis is computed based 

on the following three methods: 

1. The assumed true parent distribution  

2. A best-fit normal distribution where the sample mean and standard deviation are 

estimated from the random data generated from the assumed parent distribution.  

3. An extreme value distribution, the parameters of which are estimated from either the 

top or bottom fraction of the simulated random data.  

Hereafter, the confidence interval estimation methods based on the above three distributions are 

referred to as Method 1, Method 2, and Method 3, respectively. 

Setting a confidence interval on the parent distribution using either Method 1 or 2 is fairly 

trivial. The lower and upper limits of the confidence interval are constructed based on the 

probability of a type I error that one intends to tolerate. When the probability of the type I error is 

specified to be α  )10( ≤≤ α , )%1(100 α−×  of data from a normal condition should be 

encompassed within the confidence interval. In other words, %100 α×  of data will be outliers. 

Accordingly, the lower and upper limits of the confidence interval can be set at )2(1 α−F  and 

)21(1 α−−F , respectively. Here )(1 xF −  is the inverse CDF of the known parent distribution. 

These threshold limits correspond to a )%1(100 α−×  confidence interval. For instance, when 

the type I error is set 0.1, this type I error corresponds to a 90% confidence interval. In addition, 

the lower and upper limits are set so that 5 % and 95% of the normal data are below each of 

these threshold values (90% are within the two bounds). Because the true CDF of the parent 

distribution is unknown in Method 2, the CDF of the best-fit normal distribution is used instead 

of the true CDF to compute the lower and upper limits.  
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When Method 3 is applied to compute the threshold values, cautions much be taken in 

selecting the probability of type I error for the distribution of the extreme values. For instance, 

let’s assume that 10,000 sample points are generated from a parent distribution and the type I 

error is set to 1% )01.0( =α . Then, by the definition of the type I error, it is expected that there 

will be about 1 % or 100 outliers out of 10,000 samples. If either the maximum or minimum 

value is extracted from a moving window of size 10 )10( =n , 1,000 extreme values will be 

obtained from the original 10,000 samples. In other words, 10% of the original data will be used 

to fit the extreme value distribution. In the next step, the type I error of the extreme value 

distribution should be set so that this type I error produces the same number of outliers as the 

type I error of the parent distribution does. To do this, the type I error of the extreme value 

distribution should be set to 10% (or )n×α  in order to produce 100 outliers out of 1,000 extreme 

values (or out of 10,000 original samples). That is, the lower and upper limits of the confidence 

interval can be set at )2(1 α×− nF  and )21(1 α×−− nF , respectively. 

For the computation of the lower limit at )2(1 α×− nF , the Gumbel distribution for minima 

is used to approximate the CDF function. For the given cumulative probability value at 2α×n , 

Equation (13) becomes,  















 −

−−=×
δ

λα xn expexp1
2

 (27)

By solving Equation (27) with respect to x , the lower limit mx  at )2(1 α×− nF  is obtained, 

Lower limit: 













 ×−−+=

2
1lnln αδλ nxm  (28)

The upper limit Mx  at )21(1 α×−− nF  is obtained from Equation (10) in a similar fashion, 

Upper limit: 













 ×−−−=

2
1lnln αδλ nxM  (29)
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Note that the λ  and δ  values in Equations (27) and (28) are obtained by fitting the maxima 

values to the Gumbel distribution for minima, and the λ  and δ  values in Equation (29) 

correspond to the Gumbel distribution for maxima. 

Three distributions are chosen to investigate the number of false-positives, or Type I errors, 

produced by each of the three methods discussed previously. The normal, lognormal and gamma 

distributions are modeled using the three methods and the number of outliers is compared for a 

99% confidence interval. The normal distribution will provide a sanity check to make sure that 

the establishment of the confidence intervals based on EVS and best-fit normal distribution 

produce similar thresholds. The lognormal and the gamma distributions are both skewed and will 

provide an opportunity to dramatically illustrate the shortcomings of the confidence interval 

estimation based on a normal assumption of the data. The probability density function (PDF) for 

each of the three distributions are as follows:  
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where )(aΓ  is the gamma function. 

Castillo (1988) shows that both the minimum and the maximum for the normal and 

lognormal distributions can be modeled with a Gumbel distribution, thereby reducing the effort 

of finding the best-fit distribution in this example. On the other hand, the gamma distribution has 

Gumbel distributed maxima and Weibull distributed minima. Distributions of varying sample 

size from N = 1000 to N = 610 were created and analyzed. The typical analysis results only for 

the sample size of N = 10,000 are presented in this study. Similar results are, however, observed 

for the other examined sample sizes. Tables 2, 3 and 4 summarize the results of the parameter 
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estimation and number of outliers for the N = 10,000 sets of data from each of the three 

distributions. Only the first 1,000 data points are plotted for illustrative purposes in Figures 8, 9 

and 10. 

Looking at the normally distributed data in Figure 9, it seems that the thresholds obtained from 

Methods 1, 2 and 3 are comparable. For Method 3, the least-squares return period relative error 

(LSRPRE) estimation technique (Castillo, 1988) is used to compute parameters of the Gumbel 

distributions for the maxima and minima of the normally distributed data. Initially several 

techniques of parameter estimation suggested by Castillo (1998) were investigated and the 

LSRPRE turned out to produce the best-it result for the given data sets.  

Table 2 shows the upper and lower confidence limits computed from Methods 1, 2 and 3, and 

the associated numbers of outliers. As can be seen in Figure 9 and Table 2, even though Method 

3 returns thresholds that are slightly different from the known PDF, the number of outliers is 

closer to the expected 1% than Method 2.  

In the second numerical example, the parent distribution is lognormal instead of normal. For 

this simulation, µ  = 1.0 and σ  = 0.5 are assumed for the parameter values in Equation (31). The 

associated lognormal density function is displayed on the left side of Figure 10. The skewness 

and kurtosis of this distribution are 1.74 and 8.45, respectively. Note that, for all normal 

distributions, the values of the skewness and kurtosis should be 0.0 and 3.0, respectively 

(Wirsching et al., 1995). Therefore, the departure of the skewness and kurtosis values from 0.0 

and 3.0 indicates the non-Gaussian nature of the data. Figure 10 and Table 3 display similar 

analysis results for the lognormal parent distribution. Again the LSRPRE estimation technique is 

employed for the maxima of the lognormal data. The minima, however, are fitted using the least-

squares probability absolute error method. For the lognormal example, Method 3 only returns 3 

more false-positive indications than the expected 100 outliers as calculated from Method 1. 

Method 2, however, shows over double the number of false-positive indications due to the upper 

threshold being far too low. On the other hand, the lower limit based on normality completely 

misses all of the minimum values because the lognormal distribution contains only positive data 

points. 
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Finally, the sequential tests are applied to data sets simulated from a gamma parent 

distribution. In this example, the sample data are generated from a gamma distribution with k = 3 

and ν  = 0.2 for the parameter values in Equation (32). This gamma distribution has the 

skewness value of 1.15 and kurtosis of 5.00, respectively. The associated density function is 

plotted on the left side of Figure 11. The gamma distribution is skewed to the right for a small 

value of k. As the degrees of freedom, k, increases the gamma distribution converges to the 

normal distribution. The maxima of the gamma parent distribution are fit using the LSRPRE 

method, while the minimum values are fit using the standard weighted least-squares method 

with a weighting factor of 1. The extreme value method again shows a distinct advantage over 

the normal assumption. For the gamma distribution, Method 3 returns four lower numbers of 

false-positives than expected from Method 1, while Method 2 again returns almost twice as 

many false-positives as Method 1. The number of false positive indications returned by Method 

2 might lead to incorrect damage diagnosis of the system. 

A drawback of EVS is that different methods of parameter estimation are optimal for fitting 

different distributions. Once the parameter values of the extreme value distribution are estimated, 

there is, however, a noticeable advantage of EVS over normality assumption in properly setting 

the threshold values. The next two sections apply the techniques demonstrated in Section 4 to 

real world test structures for damage detection. 
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Figure 9: The exact 99% confidence interval of a normal parent distribution compared with that from 

extreme values statistic. This figure shows the first 1000 data points from a 10,000 data point set. 
 

 

Table 2: Estimation of 99% confidence intervals for the 10,000 data points generated from a Gaussian parent 
distribution. 

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

# of outliers out of 
10,000 samples. 

(α = 0.01) 
Method 1 (Exact) 2.548 -2.548 100 

Method 2 (Normal) 2.551 -2.545 91 
Method 3 (Gumbel) 2.549 -2.482 99 
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Figure 10: The exact 99% confidence interval of a lognormal parent distribution compared with those 

computed from either extreme values statistic or the normality assumption. 

 

 

Table 3: Estimation of 99% confidence intervals for the 10,000 data points generated from a lognormal 
parent distribution. 

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

# of outliers out of 
10,000 samples. 

(α  = 0.01) 
Method 1 (Exact) 9.854 0.750 100 

Method 2 (Normal) 7.378 -1.206 230 

Method 3 (Gumbel) 9.827 0.715 103 
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Figure 11: The exact 99% confidence interval of a gamma parent distribution compared with those computed 

from either extreme values statistic or the normality assumption. 

 

 

Table 4: Estimation of 99% confidence intervals for the 10,000 data points generated from a gamma parent 
distribution 

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

# of outliers out of 
10,000 samples. 

(α  = 0.01) 
Method 1 (Exact) 46.369 1.689 100 

Method 2 (Normal) 37.016 -7.142 191 

Method 3 (Gumbel) 45.693 1.600 96 
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5. Three-Story Frame Structure 

5.1. Test Structure Specifications 

One of the structures tested is a three-story frame structure model shown in Figure 12. The 

structure is constructed of Unistrut columns and aluminium floor plates. The floors are 1.3-cm-

thick (0.5 in) aluminium plates with two-bolt connections to brackets on the Unistrut. The base is 

a 3.8-cm-thick (1.5 in) aluminium plate. Support brackets for the columns are bolted to this plate 

and hold the Unistrut columns. The details of these joints are shown in Figure 12. Dimensions of 

the test structure are displayed in Figures Figure 15Figure 16. All bolted connections are 

tightened to a torque of 0.7 Nm (60 inch-pounds) in the undamaged state. Four Firestone air 

mount isolators, which allow the structure to move freely in horizontal directions, are bolted to 

the bottom of the base plate. The isolators are inflated to 140-kPa gauge (20 psig) and then 

adjusted to allow the structure to sit level with the shaker. The shaker is coupled to the structure 

by a 15-cm-long (6 in), 9.5-mm-diameter (0.375-in) stinger connected to a tapped hole at the 

mid-height of the base plate. The shaker is attached at corner D, as shown in Figure 14, so that 

both translational and torsional motions can be excited.  

5.2. Test Setup and Data Acquisition 

The structure is instrumented with 24 piezoelectric single-axis accelerometers, two per joint as 

shown in Figures Figure 13Figure 16. Accelerometers are mounted on the aluminum blocks that 

are attached by hot glue to the plate and column. This configuration allows relative motion 

between the column and the floor to be detected. The accelerometers are numbered from the 

corner A to B, C, and D counter-clockwise and from the top floor to the first floor. The 

accelerometers on the plate have odd channel numbers, while the accelerometers on the column 

have even numbers. The nominal sensitivity of each accelerometer is 1 V/g. A 10-mV/lb force 

transducer is also mounted between the stinger and the base plate. This force transducer is used 

to measure the input to the base of the structure.  

A commercial data acquisition system controlled from a laptop PC is used to digitize the 

accelerometer and force transducer analogue signals. The data sets that were analyzed in the 
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feature extraction and statistical modeling portion of the study were the acceleration time 

histories. Each set of data gathered consisted of 4096 points.  

In each test case, three separate data sets were collected with the shaker input level at 3, 5, or 

7 volts. The bandwidth of the shaker and the sampling rate of the response were also varied from 

800, 1600 to 3200 Hz in each test case to determine in which frequency bandwidth the feature 

extracted from the date would be most sensitive to the induced damage. All input from the 

shaker to the base was random. 

Two damage cases were investigated in this experiment. The first damage were introduced to 

the corner C of the third floor (3C in Table 5) and the second damage were placed at the corner 

A of the first floor (1A in Table 5) along with the damage at 3C for the second damage case. 

These two damage locations are shown in Figure 12. For each damage location, four bolts at 

each joint were loosened until hand tight, allowing relative movement between the floor plate 

and column. After each damage case, all the bolts were tightened again to the initial torque of 0.7 

Nm (60 in-pounds). 

 

 
Figure 12: Photo of the full test structure. 

 

Figure 13: Photo of sensor location on a joint. 

 

Figure 14: Photo of the shaker and force 
transducer.

    3C 

       1A 
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Figure 15: Basic dimensions of the three-story 
frame structure. 
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Figure 16. Floor layout as viewed from above. 

Table 5 shows the operational variability in data sets from which the EV data were drawn. 

Table 5: Test Matrix Showing Operational Variability Considered in the Data Sets. 

Case Sampling rate Input Voltage Level  

Undamaged 800 Hz 3,5,7 V 

Undamaged 1600 Hz 3,5,7 V 

Undamaged 3200 Hz 3,5,7 V 

Corner 3C Hand Tight 800 Hz 3,5,7 V 

Corner 3C Hand Tight 1600 Hz 3,5,7 V 

Corner 3C Hand Tight 3200 Hz 3,5,7 V 

Corners 3C and 1A Hand Tight 800 Hz 3,5,7 V 

Corners 3C and 1A Hand Tight 1600 Hz 3,5,7 V 

 

5.3. Finite Element Analysis of the Three-Story Frame Structure 

For most real world applications, information from the damaged system will not be easily 

available. Therefore, numerical simulations can be utilized to define SHM system properties 
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prior to deploying a monitoring system on real world structures. Examples of such properties 

include, but are not limited to, bandwidth, sensitivity, dynamic range of sensors, optimal location 

of sensors, sensitivity of extracted features to damage, and possible excitation source waveforms. 

The ultimate goal of this section is to develop a finite element model of the three-story frame 

structure that can be "damaged" or "repaired" as needed, and that will eventually facilitate 

parameter specification of the SHM system prior to its actual implementation. Figure 17 provides 

a view of the FE model, which was constructed to match the geometry and physical properties of 

the three-story frame structure. The geometry for the model was developed using the CAD 

software IDEAS (www.sdrc.com) and analyzed in a general finite element analysis program 

ABAQUS (www.abaqus.com). Modeling of each component is detailed in the followings. 

 
Figure 17: Finite element model of experimental structure. 

 

Floor plates 

Each of the three floor plates is a rectangular aluminum plate with squares cut out of each corner 

for the columns. The floor plates were modeled with shell elements using aluminum material 

properties and the same thickness as the physical floor plates. The base plate was also modeled 

with shell elements and aluminum material properties. 

Base plate 

Floor plate Floor plate 
bracket 

Column

Column 
bracket 
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Air-bearings 

To model the air-bearings, springs were attached from nodes on the base plate to the ground. The 

nodes were placed at locations corresponding to the physical connections between the air-bearing 

and the floor plate. Values for the air-bearing spring constants were approximated using 

specifications given by the air-bearing manufacturer. These spring constants were then updated 

to match the natural frequencies computed from the finite element model with those obtained 

from an experimental modal test of the structure. This model updating properly reproduced rigid 

body motions associated with the structure rocking on its base. 

Columns 

The columns are 152.4 cm-long (60-in.) B-line brand stainless steel channels. Figure 18 shows 

the cross-section shape and major dimensions of the columns. Beam elements with the same 

geometric cross-section as the physical columns were used in the model. 

 

 

1 5/8”

13/16”

 
Figure 18: Cross-section of column. 

 

Column brackets 

To attach the columns to the base plate, B-line brackets were used. These brackets are referred to 

as column brackets throughout this report. Each bracket is comprised of a flat plate that is bolted 

to the base plate and a U-shaped channel that extends perpendicular to the base plate and 

encompasses the bottom 8.89 cm (3.5 in) of the column. The column is bolted to the U-shaped 

channel of the bracket. The plate portion of each bracket was modeled with shell elements. To 

model the U-shaped channel, the cross-section of the column was increased to a length that 

2.06 cm
(13/16”)

4.13 cm
(1 5/8”)
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included the geometry of the bracket. The cross-section of the column including the bracket is 

shown in Figure 19. 

 
column 
bracket 

column

 

Figure 19: Cross-section of column with column bracket. 

Floor plate brackets 

Brackets are used to attach each floor plate to the four columns. Each bracket, referred to as a 

floor plate bracket, has two flat plates attached to the floor plate and an L-shaped channel 

attached to the column. Each of the flat plates is rectangular with dimensions of 3.81 cm (1.5") x 

4.7625 cm (1.875"). The L-shaped channel is 9.21 cm (3.625") tall, and fits with the column as 

shown in Figure 20. As was done with the column brackets, the cross-section of the column is 

adjusted in the regions where the floor plate brackets are attached to include the cross-section 

geometry of the brackets. The plates of each bracket are rigidly connected to the columns with 

beam multiple point constraints (MPCs). 

 
floor plate 
bracket 

column

 
Figure 20: Cross-section of column with floor plate 

bracket. 

Contact Surfaces 

The original intent of the FE modeling was to create a linear model of the structure. Therefore, 

contact between the floor plates and the floor plate brackets was simulated by introducing linear 
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spring elements from nodes on the floors to nodes on the brackets. For the floor plates, a normal 

spring constant uK  was calculated by, 

( )
L

AEKu =  (33)

where A is the contact area, E is the Young’s Modulus, and L is half of the shell thickness 

because the nodes are located on the mid-surface of the shell elements and represent movement 

of that surface. The same method applies for the lower normal contact spring lK .  

 

 

Figure 21: Isometric view of a corner joint (with column 
removed) showing locations of contact springs. 

The acceleration time histories from the linear model were not desirable because the data 

from the damaged and undamaged cases were exactly the same, so the springs were changed to 

bilinear springs. The nonlinear springs resist motion with linearly increasing force up to a certain 

magnitude, after which the resisting force remains constant. In this way, the nonlinear springs 

model friction and slippage in the joint. The spring constants for the nonlinear springs were 

estimated based on the motion in the joint in the linear model. These spring constants should be 

updated and validated in future work with experimental data from the test structure. 

Damage Simulation 

The bolts in the joints of the structure were modeled as beam elements connecting nodes on the 

floor plates to nodes on the floor brackets. The tightness of the bolts was introduced by applying 

a stress initial condition in the axial direction of the bolts. The magnitude of the preload was first 

calculated from the following equation, 

SpringBolt 

Floor plate

Floor bracket
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d
TFi 20.0

=  (34)

where Fi is the preload in the bolt, T is the torque to which the bolt is tightened, and d is the 

fastener size. The stress can then be calculated as, 

2

4
d

Fi

π
σ =  

(35)

For damaged cases, the preload in the bolts at one of the joints was reduced to model 

loosening of the bolts. The damage can be simulated in three different ways in this model. The 

first case is to reduce the preload of the bolts at the beginning of the analysis and leave them 

constant throughout the procedure. This method models a joint that has been damaged, but is not 

being further damaged. The second case is to reduce the stress in the bolt linearly throughout the 

analysis. This method models a joint that is progressively loosening or being damaged. The third 

case of damage introduction is a step reduction of stress at one time point during the analysis. 

Many other damage cases could be introduced to the model in further studies. The ability to 

easily apply different types and magnitudes of damage to the structure is one of the main 

advantages this analytical method has over experimental data collection. 

Model Validation 

Before being used to generate acceleration response data, the model was validated by comparing 

it to the physical structure. The two areas compared were weights of the components for the 

model and the physical structure and modal analysis results for each. 

The weights of the components of the finite element model and the physical test structure are 

shown in Table 6. As seen in the table, the weights of individual components are not exactly 

equal, but they are close, and the total weights of the two cases are almost exactly equal. One 

discrepancy that needs clarification is the weight of the base plate and air-bearings. When the 

physical structure was weighed, the air-bearings were left attached to the base plate. Therefore, 

the weight of the air-bearings is included in the weight of the base plate listed in the table.  
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Experimental and analytical modal analyses were performed on the physical structure and 

with the finite element model, respectively. The frequencies for the first several modes of each 

are shown in Table 7.  

 

Table 6: Weights of structure components. 

 Mass (kg) 
Component Model Physical 
Floor plates 28.58 29.48 
Base plate 47.99 

Air-bearings 4.581 54.43 

Base brackets 4.627 6.360 
Floor brackets 6.940 5.911 

Columns 17.15 11.68 
Base bolts 0.6804 1.270 
Floor bolts 0.2268 1.678 
Total mass 110.8 110.8 

 

Table 7: Natural frequencies (Hz) from experimental data and 
finite element model. 

Mode number Experimental FE Model 
1 2.290 3.030 
2 3.040 3.870 
3 12.57 6.760 
4 13.90 7.270 
5 14.46 11.00 
6 24.87 20.12 
7 32.04 34.95 
8 40.08 39.89 
9 49.82 50.84 
10 69.10 57.59 

 

5.4. Damage Diagnosis Results 

The signal chosen for analysis was the raw time-series data from channel 21, the sensor on the 

plate for damage location 3A of the structure. Data from the highest level of excitation, 7V, were 

selected. If the data were plotted in series, data corresponding to the damaged state would be 

observed to have a lower variance, and this feature could be picked up immediately by an 
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appropriate hypothesis test. Figure 22 shows the data from the undamaged condition followed by 

the data from the damaged condition. The two lines denote a 99% confidence interval computed 

from the normality assumption of the undamaged data. However, if one is interested in a simple 

threshold-crossing criterion, one could not deduce damage from the figure because the damaged 

data with a low variance clearly falls between the 99% confidence interval of the undamaged 

data.  

Raw data would not usually be used in this manner and there is no reason to suppose that 

damage would generally produce an increase in the amplitude of the signal. The object of this 

exercise is to show that one can construct a threshold-crossing diagnostic by using EVS. 

A moving window of width 64 samples was stepped through the 4096 points of each data set 

to generate 64 maxima for each condition. When the empirical CDF was plotted in coordinates 

appropriate for Gumbel maximum probability paper, the results in Figure 23 were obtained. A 

straight line fit to the 64 highest order statistics gave a satisfactory degree of agreement with the 

data. This fit was interpreted as evidence that the maxima were Gumbel distributed. The bilinear 

nature of the plot in Figure 23 might be regarded as some cause for concern. However, an 

analysis of the parent distribution indicated that the raw accelerations were very close to 

Gaussian, and it is known that the maxima from Gaussian distributions converge slowly to the 

required Gumbel distribution (Castillo, 1988). In fact, a plot of the original 4096 data points from 

channel 21 in Gumbel maximum coordinates also showed a satisfactory straight line fit in the 

right tail (Figure 24). 

The next stage in the analysis was to estimate parameters to fit a Gumbel maximum 

distribution to the empirical CDF. The results of this process are shown in Figure 25. The ML 

method was used, and the parameters obtained were 2637.0=λ and 0373.0=δ .  

Having obtained estimates for the parameters, it is a trivial matter to use the CDF to generate 

values for the )1(100 α−  % confidence interval of the distribution, as in Equations (28) and (29), 

to give the associated confidence limits for the data.  
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Figure 22: The raw time-series data from channel 21 with a 99% confidence 
interval; undamaged system data followed by damaged system data. 
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Figure 23: Plot of windowed maxima in Gumbel coordinates. 
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Figure 24: Plot of channel 21 raw acceleration data in 
Gumbel maximum coordinates. 
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Figure 25: Fit of Gumbel maximum distribution to 
empirical CDF from channel 21 maxima. 
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Figure 26. Windowed maxima from channel 21 accelerations. Upper and 
lower thresholds are 99.5 and 0.5 percentiles from the Gumbel distribution 

for maxima shown here as solid lines. 

The results in Figure 26 show that a good upper threshold is obtained for maximum values, 

as opposed to Figure 22 that used the raw data, i.e., the data from the parent distribution. There is 

also a lower threshold here that serves to partially separate the undamaged and damaged 

conditions. In fact, this threshold is incorrect. The problem is that the lower threshold comes 

from the Gumbel distribution for maxima (here the concern is with maxima of maxima). The 

lower threshold should actually be computed from a distribution for minima (the minima of 

maxima). This fact is clear from the number of threshold crossings on the normal condition data 

set.  

To find the appropriate distribution, the empirical CDF was first plotted in coordinates 

appropriate for Gumbel minimum probability paper resulting in a figure that had marked 

curvature in both tails. The next attempt used Weibull minimum coordinates. The location 

parameter λ  was adjusted by trial and error until reaching a value of 12.0=λ , yielding the plot 

shown in Figure 27. This plot shows that the whole population of channel 21 maxima was well 

described by a Weibull distribution for minima. This description was confirmed by the maximum 

likelihood curve fit shown in Figure 28. Although only points in the left tail were used to fit 

Gumbel Threshold 

Undamaged Damaged 
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parameters, the curve describes the empirical CDF over the entire range. The remaining 

parameters for the distribution were estimated as 1696.0=δ  and .6976.2=β  Using the whole 

data for the parameter estimation yielded estimates of 1720.0=δ  and β = 2.7056. 

Once the parameters for the distribution were obtained, the lower and upper thresholds could 

once again be computed using the inverse CDF of Equation (12). 

βαδλ /1)]
2

1ln([ −−+=mx     βαδλ /1)]
2

ln([−+=Mx  (36)

This parameter estimation gave the upper and lower threshold values of 0.4347 and 0.1438, 

respectively, as shown in Figure 29. 
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Figure 27: Plot of channel 21 windowed maxima in coordinates 

appropriate for a Weibull minimum distribution. 
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Figure 28: Weibull minimum distribution fit to channel 21 
windowed maxima. 
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Figure 29: Windowed maxima from channel 21 accelerations. Upper and 
lower thresholds are 99.5 and 0.5 percentiles from the Weibull distribution 

for minima, shown here as dashed lines. 
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The lower threshold is much better than the previous threshold based on the Gumbel 

distribution for maxima (solid line in Figure 29). The improved threshold estimation appears to 

be the major factor in favor of using EVS for damage identification. The EVS allows for better 

control of the thresholds that are used to signify statistical deviance from the undamaged 

condition. To drive the point home, Figure 30 shows the data from Figure 26 with thresholds 

computed on the assumption that the maxima data are Gaussian (dotted thresholds); the 0.5 and 

99.5 percentiles are clearly very conservative. Many more of the damaged condition maxima 

would be judged normal. 

The final analysis for these data employs the Auto Regressive–Auto Regressive with 

Exogenous Inputs (AR-ARX) process for damage detection (Sohn and Farrar, 2001). The AR-

ARX model is a linear, time predictive model from which residual errors are calculated. These 

residual errors are then used as the damage sensitive feature that is monitored. The details can be 

found in Appendix B. 
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Figure 30: Windowed maxima from channel 21 accelerations. 
Upper and lower thresholds are 99.5 and 0.5 percentiles from the 

Gaussian distribution, shown here as dotted lines. 
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First, the difference between acceleration time histories between channels 21 and 22, which 

span the damaged joint 3A, was computed for the damaged and undamaged cases. The AR-ARX 

model was then fit to the undamaged signal and used to construct a vector of prediction errors. 

The same model was then used to find a sequence of prediction errors on the damaged data. The 

underlying assumption is that the errors on the damaged sequence will be significantly higher 

than those on the undamaged sequence because the AR-ARX model is developed from fits to the 

undamaged data.  

The EVS computes an accurate threshold for the undamaged data. To apply the method, a 

window of 64 points was again stepped through the data, and the maxima from each of the 

windows were extracted. As before, this procedure resulted in 64 maxima from the original 4096 

points. 

Figure 31 shows this sequence of maxima plotted in coordinates appropriate for the Gumbel 

maximum distribution. The transient nature of the AR-ARX time prediction model at a few 

initial time points engendered anomalously high initial residual errors. This transient resulted in 

two spurious points out of the 64-point record of maxima, which were duly ignored during the 

initial analysis. Figure 31 shows that the hypothesis of a Gumbel distribution for the right tail is 

tenable, so the parameters of the Gumbel distribution were estimated from the maxima data. The 

comparison of the empirical Gumbel CDF and the analytical one with fitted parameters are 

shown in Figure 32. 

The parameters obtained from the curve fit were 0506.0=λ  and 0071.0=α . Substituting 

these values into Equations (28) and (29) gave a lower threshold of 0.0388 and an upper 

threshold of 0.0882. However, note that the lower threshold is inappropriate because it is based 

on maxima values as previously discussed. 
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Figure 31: Plot of windowed maxima of AR-ARX errors in a Gumbel 
maximum coordinates. 
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Figure 32: Gumbel maximum distribution fit to windowed 
maxima of AR-ARX errors. 



 43

Figure 33 shows the maxima of the prediction errors obtained from the AR-ARX analysis for 

the undamaged and damaged cases. With a type I error probability of α  = 0.005, a one-sided 

confidence interval is computed on the right tail of the prediction errors. Note that because the 

occurrence of damage will increase the prediction errors, the detection of a prediction error that 

goes beyond a certain threshold value is the primary goal in this example. In other words, the 

monitoring of smaller prediction errors are not main concerns. Therefore, only the upper control 

limit is computed from Equation (29) using α  instead of 2α . As expected, the upper threshold 

provides a good upper bound on the normal condition data and separates it successfully from the 

damaged data. In this case, because the undamaged and damaged data sets are so distinctive, 

Gaussian limits would probably have worked as well. However, as the earlier analysis showed, 

there are situations where the Gaussian limit will break down. 

The next analysis involves more data from channel 21, but coming from a separate 

experiment in which the level of excitation was 5 V and the frequency bandwidth of the 

excitation was 1.6 kHz. The features are once again the prediction errors from the AR-ARX 

analysis. In this case, three data sets were considered: the first two corresponding to the 

undamaged condition and the final one corresponding to the damaged case. As before, 4096 

points per set were available and 64-point sets of maxima were extracted. The empirical CDF for 

the maxima from the first undamaged case is shown in Figure 34 on the Gumbel probability 

paper. The excellent fit implies that the maxima have a Gumbel distribution. Figure 35 shows the 

maximum likelihood curve-fit to the empirical CDF. An estimate of the parameters yielded 

2804.0=λ  and 0497.0=δ . The upper threshold value was obtained from Equation (29) again 

using α  instead of 2α  and gave a threshold value of 0.5439. 

The windowed maxima of the errors are shown in Figure 36 with the EV and Gaussian 

thresholds applied. As one can see, the Gaussian threshold encompasses the entire undamaged 

feature, but also encompasses a significant portion of the damaged data feature. The EVS 

threshold does show a few false-positive indications in the undamaged data as should be 

expected. The EVS threshold, however, shows a marked improvement in distinguishing the 

damaged feature set from the undamaged data set. Next, these same EVS techniques will be 

applied to a spring-mass system in which the feature set has been extracted and normalized in a 

slightly different manner than the three-story frame structure. 
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Figure 33: Windowed maxima from the AR-ARX prediction errors. 
The upper threshold is 99.5 percentile from the Gumbel distribution 

for the maxima. 
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Figure 34: Undamaged experimental data from channel 21 are 
plotted in Gumbel coordinates to show a satisfactory Gumbel fit 

to the data. 

Undamaged Damaged 



 45

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order Statistics

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Gumbel distribution curve−fit

Empirical CDF
Points used  
Fitted CDF   

 

Figure 35: Gumbel distribution fit to channel 21 data. 
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Figure 36: Undamaged and damaged system data with threshold 
values determined from EV analysis and Gaussian analysis. 
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6. Eight degree-of-freedom spring-mass system 

6.1. Description of the Test Structure 

The effectiveness of EVS is further demonstrated using acceleration time series recorded from an 

8 DOF spring-mass system shown in Figure 37. The system is formed with eight translating 

masses connected by springs. Each mass is an aluminum disc that is 25.4 mm thick and 76.2 mm 

in diameter with a center hole. The hole is lined with a Teflon bushing. There are small steel 

collars on each end of the discs (Figure 38). The masses all slide on a highly polished steel rod 

that supports the masses and constrains them to translate only along the rod. The masses are 

fastened together with coil springs epoxied to the collars that are, in turn, bolted to the masses. 

The DOFs, springs and masses are numbered from the right end of the system, where the 

excitation is applied, to the left end, as shown in Figure 37. The nominal value of mass 1 (m1) is 

559.3 grams. Again, this mass is located at the right end where the shaker is attached. m1 is 

greater than the others because of the hardware needed to attach the shaker. All the other masses 

(m2 through m8) are 419.4 grams. The spring constant for all the springs is 56.7 kN/m for the 

initial condition. Damping in the system is caused primarily by Coulomb friction. Every effort is 

made to minimize the friction through careful alignment of the masses and springs. A common 

commercial lubricant is applied between the Teflon bushings and the support rod. The 

undamaged configuration of the system is the state for which all springs are identical and have a 

linear spring constant. Placing a bumper between two adjacent masses simulates nonlinear 

damage by limiting the movement of one mass relative to the other mass.   

Figure 38 shows the hardware used to simulate nonlinear damage. When one end of a 

bumper, which is placed on one mass, hits the other mass, impact occurs. This impact simulates 

damage caused by the impact from the closing of a crack during vibration. Changing the amount 

of relative motion permitted before contact and changing the hardness of the bumpers on the 

impactors can control the degree of damage. For all damage cases presented, the initial clearance 

is set to zero. Table 8 summarizes each of the four damage cases. In damage case 3, five of the 

twenty-five data sets were ignored because the excitation level was low enough that the bumpers 

did not close the 2 mm gap to the other mass, resulting in effectively undamaged cases. 
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Figure 37: The 8 DOF spring-mass system attached to a shaker with 
accelerometers mounted on each mass. 

 

  

Figure 38: A typical bumper used to simulate nonlinear damage. 

Table 8: List of time series employed in this study. 
Case Description Input level Data # per input Total data # 

0 No bumper 3, 4, 5, 6, 7 Volts 15 sets 75 sets 

1 Bumper between m1-m2 3, 4, 5, 6, 7 Volts 5 sets 25 sets 

2 Bumper between m5-m6 3, 4, 5, 6, 7 Volts 5 sets 25 sets 

3 Bumper between m7-m8 4, 5, 6, 7 Volts 5 sets 20 sets 
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6.2. Damage Diagnosis Results 

In this example, like the frame structure, the AR-ARX model (Appendix B; Sohn and Farrar, 

2001) is first fit to an acceleration time history measured from the baseline condition of a system. 

If a time prediction model obtained from the baseline system is used to predict a new time signal 

measured under a damaged condition, the prediction errors will increase. Based on this premise, 

SPC is performed using the prediction errors as features. However, because the 8 DOF system is 

also subject to changing excitation levels, the varying input levels might result in unwanted false 

outliers. To overcome this difficulty, an auto-associative neural network is employed for data 

normalization. Here, data normalization is a procedure of “normalizing” data sets such that 

signal changes caused by operational and environmental variations of the system can be 

separated from structural changes of interest, such as structural deterioration or degradation. 

Detailed discussion of data normalization using the auto-associative neural network can be found 

in Sohn, et al. (2002). 

Because there are 4096 points in each case and a 99% confidence interval is being used, one 

would expect that for an undamaged case there would be 21 statistically deviant points, or 

outliers, on each side of the distribution; 42 outliers in total. Table 9 summarizes the diagnosis 

results of the 8 DOF experiment. 

The outliers in the undamaged data were higher than was expected, but both the normality 

assumption and the extreme value method yielded similar results. Several normality assessment 

techniques revealed that the prediction errors used as features were fairly close to normal, 

therefore there is no surprise that the normality assumption and EVS returned similar results in 

this case. Looking at m6 in the third damage case, the number of outliers is definitely above the 

undamaged case and would most likely show up as a false-positive indication. m1 has 

consistently the lowest number of outliers. This is likely because it is connected to the shaker and 

has less variability than the other masses in the system. In most of the damage cases the two 

masses between which the bumper is placed show a large increase in outliers, as expected.  
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Table 9: Summary of the 8 DOF system test results showing the predicted number of outliers contrasted with the 
normal assumption and the extreme value statistics.  

Case m1 m2 m3 m4 m5 m6 m7 m8 
Undamaged 54 (42) 70 (47) 63 (62) 60 (63) 60 (62) 65 (72) 67 (75) 68 (82) 
Damage 1 60 (47) 369 (381) 118 (123) 90 (93) 78 (89) 88 (63) 68 (73) 73 (93) 
Damage 2 53 (43) 55 (47) 68 (67) 68 (71) 383 (444) 155 (197) 82 (99) 72 (100) 
Damage 3 54 (41) 58 (50) 77 (78) 64 (71) 88 (103) 155 (181) 526 (586) 290 (331) 

* Highlighted cells show locations of damage where the bumper is placed between two masses and the number of outliers are 
expected to increase. 

• Entries in the table represent the number of outliers for 99% confidence thresholds. The first number is obtained using the EVS 
method. The second number in parenthesis is obtained using the normality assumption. 

 

7. Summary 

Data that lie in the tails of distributions have traditionally been modeled based on a Gaussian 

distribution. This inherent assumption of many statistical processes can be dangerous for 

applications such as statistical process control (SPC), which deal mostly with those extreme data 

points. Extreme value statistics (EVS) takes a closer look at modeling those extreme points 

independent of any measure of the Gaussian assumption.  

Modeling the tails simplifies the statistics to some extent. These extreme points conform to 

one of three types of distributions: Gumbel, Weibull, or Frechet. There are techniques required in 

determining which of these distributions the data fall into and in parameter estimation for fitting 

the data. The SPC can then be reworked to take advantage of the proper distribution and fitted 

parameters. 

The numeric examples demonstrate the ability of EVS when applied to simple SPC. 

Thresholds obtained from the actual distribution, the best-fit normal distribution and specifically 

modeling the extreme values are contrasted. In all of the examined cases, EVS produces results 

that only slightly deviate from those of the true distributions. 

The new SPC, extended by incorporating EVS, was applied to a three-story frame structure 

with bolted connections and an 8 degree-of-freedom (DOF) spring-mass system. The frame 

structure was created to simulate the failure of a moment resisting connection in an earthquake. 

A positive indication of damage represents the identification of bolt loosening at a joint on the 

structure. Analysis of the frame structure data used simple minima and maxima control chart 
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methods to illustrate differences in threshold values calculated using Gaussian assumption or 

EVS. In the first pass, a single channel of acceleration data was analyzed from the undamaged 

and damaged cases. A window was stepped through the data, and the maximum values from 

each window were extracted as the features. Modeling the features using EVS yielded improved 

threshold values when compared to the thresholds based on the normality assumption of the data. 

The 8 DOF system was created to demonstrate various algorithm robustness in detecting a 

nonlinear damage introduced into an otherwise linear system. The nonlinear damage is 

introduced into the system in the form of bumpers placed between the translating masses. 

Looking at the 8 DOF system, the results were much less drastic than the numeric examples. In 

the 8 DOF analysis, both the Gaussian and the EVS methods yielded similar results. After 

looking at several normality tests, it was found that the features were nearly normally distributed. 

This would indicate that the Gaussian and the EVS methods would return comparable results. 

8. Conclusions 

The results of this report show that there are advantages of using EVS to help analyze the 

Structural Health Monitoring (SHM) problem. Many of the SHM techniques implemented at Los 

Alamos National Laboratory (LANL) involve statistical decision-making based on the normality 

assumption of the test data. However, damage identification techniques often work with features 

in the extremities of a distribution that may not be accurately modeled by this Gaussian 

assumption. Despite the limited scope, this report shows promising results by reworking simple 

SPC techniques to compute confidence intervals from extreme value statistics instead of 

Gaussian statistics. By incorporating EVS into damage detection and location algorithms, 

potentially limiting and erroneous assumptions in these algorithms can be avoided. Although the 

results obtained in this investigation indicate that EVS only slightly changes the thresholds in the 

two experimental cases because of the Gaussian nature of the data, EVS seems the correct way to 

model these features. When structures, data recording or normalization procedures that yield 

non-Gaussian features need to be monitored in the future, the EVS framework will already be in 

place. 
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Appendix A: MATLAB Programs 
This Appendix contains the source code for a series of programs that are useful for extreme value 

statistics. The programs are MATLAB translations of the original Basic source code from the 

book by Castillo (1988). The following programs may also be found online at 

www.lanl.gov/damage_id. There are minor variations in the structure to eliminate GOTO 

functions for example, but in general they are fair copies. The one major exception is in the 

program estimate that makes a call to a optimization function in the MATLAB optimization 

toolbox rather than using Castillo’s original code. Examples of the use of these functions can be 

found in the main body of this report. 

A.1. simulatePD 

This function is used to generate samples of data from a given parent distribution. The basic 

structure is simple. A population of the required size is generated from a uniform distribution. 

Then, if )(xF  is the cumulative distribution for the required parent and y  is the relevant sample 

from the uniform distribution, )(1 yF −  is a sample from the parent distribution. The function uses 

a clever trick based on conditional distributions to generate the population of specified sample 

size (Castillo, 1988). All of the Extreme Value (EV) distributions can be generated from a parent 

distribution, together with a number of other useful distributions. The main omission is the 

Gaussian distribution, but this omission is not an issue as the MATLAB function randn supplies 

Gaussian deviates. 

function samples = 
simulatePD(npts,distribution,parameter1,parameter2,parameter3) 
% SIMULATE : generates an ordered vector of samples from a given 
distribution. 
% 
% Function SIMULATEPD(NPTS,DISTRIBUTION,PARAMETER1,PARAMETER2,PARAMETER3). 
Generates an  
% ordered vector of samples, i.e. order statistics, from a specified parent 
distribution  
% given the appropriate parameters for the said distribution. Routine works 
by  
% applying a nonlinear transformation to an ordered vector of uniform 
deviates. 
% 
% SAMPLES : is the ordered vector of samples from the population. 
% 
% NPTS : The number of points in the vector SAMPLE. 
% DISTRIBUTION : An integer indicating the distribution type as follows: 
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%   (1) Gumbel (maxima) 
%   (2) Gumbel (minima) 
%   (3) Weibull (maxima) 
%   (4) Weibull (minima) 
%   (5) Frechet (maxima) 
%   (6) Frechet (minima) 
%   (7) Uniform 
%   (8) Exponential 
%   (9) Cauchy 
%   (10) Raleigh 
%   (11) Pareto 
%   (12) p(x) = exp(-1/(x*x)) 
% PARAMETER1 : If only one parameter is required to specify the distribution, 
this is 
%    it, otherwise this is the first parameter. 
%    If the distribution is Pareto, parameter1 = beta 
%    " "  "  " Rayleigh, parameter1 = A 
%    " "  "  " Exponential, parameter1 = lambda 
%    " "  "  " Uniform, parameter1 = A 
%    " "  "  " Gumbel, Weibull or Frechet, parameter1 = lambda 
% PARAMETER2 : If two or more parameters are needed to specify the 
distribution, this  
%    is the second. 
%    If the distribution is Uniform, parameter2 = B 
%    " "  "  " Gumbel, Weibull or Frechet, parameter2 = delta 
%    % PARAMETER3 : If distribution is Weibull or Frechet, parameter3 = beta 
% 
% (Note that no parameters are needed for distributions 8 or 12.) 
% 
% This function is a simple variation on the BASIC subroutine SIMUL, provided 
in: 
% 
% Extreme Value Theory in Engineering 
% Enrique Castillo 
% Academic Press 
% ISBN : 0-12-163475-2 
% 
% Los Alamos : 31/07/01 
% 
 
% Generate vector of ordered uniform deviates. 
 
uni=zeros(1,npts);  % Initialise UNI with zeroed entries. 
 
h=1;      % H and V are temporary variables in the notation of the  
for i=npts:-1:1   % reference above, UNI is the vector of ordered uniform 
 v=rand;    % deviates. 
 h=h*v^(1/i); 
 uni(i)=h; 
end 
 
% Next step is the transformation. If F(x) is the CDF of the desired 
distribution, 
% then F^(-1)(UNI) is a vector of samples from the desired distribution. 
 
switch distribution 
case 1 
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 samples = parameter1 - parameter2*log(-log(uni)); 
case 2 
 samples = parameter1 + parameter2*log(-log(1 - uni)); 
case 3 
 samples = parameter1 - parameter2*(-log(uni)).^(1/parameter3); 
case 4 
 samples = parameter1 + parameter2*(-log(1 - uni)).^(1/parameter3); 
case 5  
 samples = parameter1 + parameter2*(-log(uni)).^(-1/parameter3); 
case 6 
 samples = parameter1 - parameter2*(-log(1 - uni)).^(-1/parameter3); 
case 7 
 samples = parameter1 + (parameter2 - parameter1)*uni; 
case 8 
 samples = -log(1 - uni); 
case 9 
 samples = tan( PI*(uni - (1/2)) ); 
case 10 
 samples = sqrt(-parameter1*parameter1*log(1 - uni)); 
case 11 
 samples = (1 - uni).^(-1/parameter1); 
case 12 
 samples = sqrt(-1/log(uni)); 
end 
 
% End of function SIMULATEPD 
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A.2. draw_samplesPD 

This routine constructs a plot of the empirical CDF for a population of samples on appropriately 

transformed coordinates. For example, if ‘Gumbel maximum paper’ is specified, the data is 

appropriately transformed so that data from a Gumbel maximum parent distribution will have a 

linear empirical CDF. To use the function to assign a distribution type to a population, the user 

can fit a linear regression to the tail of interest. The implication is that if the points of the data 

fall within the confidence interval for a straight line on say, Gumbel maximum paper, then the 

parent distribution is asymptotically Gumbel maximum. To obtain a plot for the Weibull or 

Frechet distributions, the user must supply an estimate of the location parameter λ . 

function dummy = draw_samplesPD(samples,tail,paper,position,lambda,fraction) 
% DRAW_SAMPLESPD : Generates an empirical CDF on appropriate probability 
paper. 
% 
% Function DRAW_SAMPLESPD(SAMPLES,TAIL,PAPER,POSITION,LAMBDA). Plots the 
empirical CDF  
% of a sample of data on either Gumbel, Weibull or Frechet probability paper 
i.e.  
% on appropriately transformed axes. 
% 
% SAMPLES : is the ordered vector of samples from the population. 
% TAIL : Specifies the tail of interest: (1) left tail (minima) 
%          (2) right tail (maxima) 
% PAPER : Specifies the type of probability paper: (1) Gumbel 
%             (2) Weibull 
%             (3) Frechet 
% POSITION : Specifies the formula for plotting positions: (1) P(I) = I/(N+1) 
%               (2) P(I) = (I-0.5)/N 
%               (3) P(I) = (I-3/8)/(N+1/4) 
%               (4) P(I) = (I-0.44)/(N+0.12) 
% LAMBDA : threshold parameter (see book below). 
% FRACTION : Fraction of data set used to fit straight line. 
% 
% This function is a simple variation on the BASIC subroutine DRAW, provided 
in: 
% 
% Extreme Value Theory in Engineering 
% Enrique Castillo 
% Academic Press 
% ISBN : 0-12-163475-2 
% 
% Los Alamos : 31/07/01 
% 
 
% Generate vector of plotting positions. 
npts = length(samples); 
y = zeros(size(samples)); 
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for i=1:npts 
 switch position 
 case 1 
  y(i) = i/(npts + 1); 
 case 2 
  y(i) = (i - 0.5)/npts; 
 case 3 
  y(i) = (i - 0.375)/(npts + 0.25); 
 case 4 
  y(i) = (i - 0.44)/(npts + 0.12); 
 end 
end 
 
% Sort sample into ascending order and read into X array. 
x = sort(samples); 
 
% Establish ranges of plot. 
xmin = x(1); 
xmax = x(npts); 
ymin = y(1); 
ymax = y(npts); 
if( ymax < 0.995 ) 
 ymax = 0.995; 
end 
if( ymin > 0.005 ) 
 ymin = 0.005; 
end 
 
% Set threshold parameter.  
tiny = 1.0e-10; 
if(nargin < 5) 
 switch tail 
 case 1 
  switch paper 
  case 2 
   lambda = xmin - tiny; % LAMBDA must be smaller than XMIN. 
  case 3 
   lambda = xmax + tiny; % LAMBDA must be greater than XMAX. 
  end 
 case 2 
  switch paper 
  case 2 
   lambda = xmax + tiny;  
  case 3 
   lambda = xmin - tiny; 
  end 
 end 
else 
 switch tail 
 case 1 
  switch paper 
  case 2 
   if( lambda > xmin ) 
   lambda = xmin - tiny; 
   end 
  case 3 
   if( lambda < xmax ) 
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   lambda = xmax + tiny; 
   end 
  end 
 case 2 
  switch paper 
  case 2 
   if( lambda < xmax ) 
   lambda = xmax + tiny; 
   end 
  case 3 
   if( lambda > xmin ) 
   lambda = xmin - tiny; 
   end   
  end 
 end 
end 
 
% Change coordinates. 
for i=1:npts 
 [r,q] = change_coordinates(x(i),y(i),tail,paper,lambda); 
 x(i) = r; 
 y(i) = q; 
end 
 
[r,q] = change_coordinates(xmax,ymax,tail,paper,lambda); 
xmax = r; 
ymax = q; 
 
[r,q] = change_coordinates(xmin,ymin,tail,paper,lambda); 
xmin = r; 
ymin = q; 
 
% If we have specified FRACTION, then we want a straight line fit. 
if( nargin < 6 ) 
 plot(x,y); 
else 
  
% Get range for curve-fit. 
 nfit = fix(fraction*npts); 
 switch tail 
 case 1 
  nl = 1; 
  nh = nfit; 
 case 2 
  nl = npts - nfit + 1; 
  nh = npts; 
 end 
  
 % LS Polynomial (linear here) fit. 
 [coeff,error_struct] = polyfit(x(nl:nh),y(nl:nh),1); 
  
 % Reconstruct data from line. 
 [predict_y, delta] = polyval(coeff, x(nl:nh), error_struct); 
  
 % DELTA has the 50% confidence interval, convert to 95% and plot bounds. 
 upper_y = predict_y + (1.96/0.6745)*delta; 
 lower_y = predict_y - (1.96/0.6745)*delta; 
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plot(x,y,'k',x(nl:nh),predict_y,'b',x(nl:nh),y(nl:nh),'ko',x(nl:nh),lower_y,'
r',x(nl:nh),upper_y,'r'); 
 legend('CFD','linear regression','points used','50% confidence limits',0)  
end 
 
% Embellish graph 
axis([xmin,xmax,ymin,ymax]); 
ylabel('Reduced Variate'); 
switch paper 
case 1 
 xlabel('Order Statistic'); 
 title('Gumbel Probability Paper'); 
case 2 
 xlabel('Reduced Order Statistic'); 
 title('Weibull Probability Paper'); 
case 3 
 xlabel('Reduced Order Statistic'); 
 title('Frechet Probability Paper'); 
end 
 
% End of function DRAW_SAMPLESPD 
function [r,q] = change_coordinates(x,y,tail,paper,lambda) 
 
switch tail 
case 1 
 q = log(-log(1.0 - y)); 
 switch paper 
 case 1 
  r = x; 
 case 2  
  r = log(x - lambda); 
 case 3 
  r = -log(lambda - x); 
 end 
case 2 
 q = -log(-log(y)); 
 switch paper 
 case 1 
  r = x; 
 case 2 
  r = -log(lambda - x); 
 case 3  
  r = log(x - lambda); 
 end 
end 
 
% End of function CHANGE_COORDINATES. 
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A.3. selectionEV 

This function is used to determine the appropriate extreme value distribution for a population 

from a given parent. The reader is referred to Castillo (1988) for the details, but there are two 

methods allowed here. First is the curvature method based on plotting the empirical CDF on 

Gumbel paper. If the population distribution is Gumbel, the CDF will appear linear. Maxima 

(minima) data from a distribution asymptotic to the Weibull distribution will show convexity 

(concavity) in the right (left) tail. This will be reflected in an estimated curvature s  greater than 

unity. For maxima (minima) data from a Frechet asymptotic distribution, the plot will show 

concavity (convexity) in the right (left) tail. This concavity or convexity will be reflected in a 

curvature less than unity. The second method here is based on the approach described in 

Pickands (1975) and Castillo (1988). The reader is referred to these references for details. This 

function is actually of limited use at the moment, as it requires the estimation of confidence 

intervals to establish if the curvature is significantly greater than unity. A function for this will be 

provided later. 

function [s,a,c] = selectionEV(samples,tail,method) 
% selectionEV : Determines the limit (EV) distribution for a given parent 
% 
% Function SELECTIONEV(SAMPLES,TAIL,METHOD).b Determines the domain of 
attraction of a 
% parent distribution from a sample. Two methods are used (see below). 
% 
% S : Curvature estimate from curvature method. 
% A, C: Parameters for distribution G from Pickands III method (see book 
below). 
% 
% SAMPLES : is the ordered vector of samples from the population. 
% TAIL : Specifies the tail of interest: (1) left tail (minima) 
%          (2) right tail (maxima) 
% METHOD : Specifies the algorithm: (1) Curvature 
%         (2) Pickands III 
%             % 
% This function is a simple variation on the BASIC subroutine SELEC, provided 
in: 
% 
% Extreme Value Theory in Engineering 
% Enrique Castillo 
% Academic Press 
% ISBN : 0-12-163475-2 
% 
% Los Alamos : 31/07/01 
% 
 
% Generate required storage and order the sample vector. 
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npts = length(samples); 
x = zeros(npts,1); 
sort(samples); 
x = samples; 
y = zeros(npts,1); 
 
switch method 
case 1 % Curvature method. 
  
 % Convert to Gumbel probability paper coordinates. 
  
 for i=1:npts 
  y(i) = (i - 0.5)/npts; % Basic plotting positions. 
  y(i) = -log(-log(y(i))); % Gumbel transformation. 
 end 
  
 % if the left tail is of interest, invert the X array and change sign. 
  
 if( tail < 2 ) 
  x = invert_X(x); 
 end 
  
 % Define the two ranges for fitting straight lines. Then fit then using a 
simple 
 % least-squares procedure. 
  
 n11 = fix(2.0*sqrt(npts)); 
 n22 = fix(n11/2); 
  
 n1 = npts - n11 + 1; 
 n2 = npts - n22 + 1; 
 s1 = straight_line(x,y,n1,n2); % gradient of lower segment. 
  
 n1 = n2; 
 n2 = npts; 
 s2 = straight_line(x,y,n1,n2); % gradient of upper segment. 
  
 s = s1/s2; % curvature. 
 a = 0.0; % zero the parameters for Pickands III. 
 c = 0.0; 
  
case 2 % Pickands III method. 
  
 % Invert the order of the X array. Keep the original in Y. 
  
 for i=1:npts 
  y(i) = x(i); 
 end 
 for i=1:npts 
  x(i) = y(npts - i + 1); 
 end 
  
 % if the left tail is of interest, invert the X array and change sign. 
 
 if( tail < 2 ) 
  x = invert_X(x); 
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 end 
  
 % Main body of algorithm. 
  
 tiny = 1.0e-30; 
  
 dm = 1.0e30; % Set minimum distance high. 
  
 n4 = fix(npts/4); 
  
 for l=1:n4 
  nt = 4*l; 
  dl = 0.0; % Original basic had a ! here, not sure what it means, assuming 
it 
    % means 'integer'. Anyway, set maximum distance low. 
   
  z24 = x(2*l) - x(4*l); % Find initial estimates of a and c. 
  z12 = x(l) - x(2*l); 
  c = log10(z12/z24 + tiny)/log10(2.0); % Offset traps underflows of log. 
  a = c*z24/(2.0^c - 1); 
   
  for i=1:nt % Loop over the values less than NT to find maximum differences  
     % between empirical Fl and Gl.   
   aux = 1 + c*(x(i) - x(nt))/a;  
    
   if( aux >= 0 ) % This is an allowed value of AUX, so carry on.  
     
   gl = 1.0 - aux^(-1.0/c); % Empirical distributions. 
   fl = (nt - i + 1.0)/nt; 
    
   e = abs(fl - gl); % Error between distributions. 
    
   if( e > dl ) 
    dl = e; % Store if error is largest so far. 
   end 
    
   fl = (nt - i)/nt; % Try different plotting position for Fs. 
   e = abs(fl -gl); 
   if( e > dl ) 
    dl = e; % Store if error is largest so far. 
   end 
    
   end % End of if( aux > 0 ). 
  end % End of loop over I. 
   
  if( dl < dm ) 
   dm = dl; 
   m = l; 
   am = a; 
   cm = c; 
  end 
 end % End of loop over L. 
  
 s = 0.0; % Zero the curvature. 
 a = am; % Parameters for Pickands III. 
 c = cm; 
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end % Of case statement.  
 
% End of function SELECTIONEV. 
 
function s = straight_line(x,y,n1,n2) % Bog standard LS gradient estimate. 
 
a1 = 0.0; 
a2 = 0.0; 
a01 = 0.0; 
a11 = 0.0; 
 
for i=n1:n2 
 a1 = a1 + y(i); 
 a2 = a2 + y(i)*y(i); 
 a01 = a01 + x(i); 
 a11 = a11 + x(i)*y(i); 
end 
 
n8 = n2 - n1 + 1; % Don't ask me - notation of the book above. 
s = (n8*a11 - a1*a01)/(n8*a2-a1*a1); 
 
return; 
 
% End of function STRAIGHT_LINE. 
 
function y = invert_X(x) 
 
npts = length(x); 
y = zeros(npts,1); 
z = zeros(npts,1); 
 
for i=1:npts 
 z(i) = -x(i); 
end 
for i=1:npts 
 x(i) = z(npts - i + 1); 
end 
 
y = x; 
 
return; 
 
% End of function INVERT_X. 
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A.4. estimate 

This function fits a parametric model to the empirical CDF from a sample population. The 

models allowed are the standard extreme value limit distributions for maxima and minima. For 

the Gumbel distributions, the function returns the location λ  and scale δ  parameters. For the 

Weibull and Frechet distributions, the function returns the scale δ  and shape β  parameters. 

However, a priori estimate of the location parameter λ  is required for the Weibull and Frechet 

distributions. Various methods of curve fitting are allowed. However, the recommended option is 

Maximum Likelihood (ML) (option 5 for the variable method). Note that the ML method appears 

to be more susceptible to local minima. A safe option is Basic Least Squares (LS) (option 1 for 

method). This routine requires the presence of the MATLAB function fminunc from the 

optimization toolbox.  

 

function [lambda, delta, beta] = 
estimate(samples,tail,distribution,method,position,nl,nh,lambda,weights,plot_
flag) 
% ESTIMATE : Estimates parameters from sample data for a given EV 
distribution. 
% 
% Function ESTIMATE(SAMPLES,TAIL,DISTRIBUTION,METHOD,POSITION,NL,NH,LAMBDA). 
Given  
% samples of data from a parent distribution, fits parameters for one of the 
three 
% Extreme Value distributions. If the distribution is Weibull or Frechet, an 
estimate  
% of the location parameter is needed. 
% 
% SAMPLES : is the ordered vector of samples from the population. 
% TAIL : Specifies the tail of interest: (1) left tail (minima) 
%          (2) right tail (maxima) 
% DISTRIBUTION : Specifies the type of EV distribution: (1) Gumbel 
%              (2) Weibull 
%              (3) Frechet 
% METHOD : Specifies curve-fitting method: (1) Least-squares probability 
absolute error 
%           (2) Least-squares return period relative error 
%           (3) Standard weighted least-squares 
%           (4) Least-squares error with given weights 
%           (5) Maximum likelihood 
%           (6) Percentile method 
%           (7) Method of moments (Gumbel) 
% POSITION : Specifies the formula for plotting positions: (1) P(I) = I/(N+1) 
%               (2) P(I) = (I-0.5)/N 
%               (3) P(I) = (I-3/8)/(N+1/4) 
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%               (4) P(I) = (I-0.44)/(N+0.12) 
% NL : Lowest order statistic to be used for fitting. 
% NH : Highest order statistic to be used for fitting. 
% LAMBDA : Estimate of location parameter. 
% WEIGHTS : Weights for the weighted least-squares methods. 
% PLOT_FLAG : Decides if we plot CDF. 
% 
% This function is a variation on the BASIC subroutine ESTIM, provided in: 
% 
% Extreme Value Theory in Engineering 
% Enrique Castillo 
% Academic Press 
% ISBN : 0-12-163475-2 
% 
% Los Alamos : 09/08/01 
% 
 
% Save range parameters for plot in case they get changed (right tail). 
 
nlp = nl; 
nhp = nh; 
 
if( nargin < 10 ) 
 plot_flag = 0; 
end 
 
% Sort data into increasing order, place in array X. 
 
npts = length(samples); 
sort(samples); 
x = zeros(npts,1); 
x = samples; 
 
% If right tail is of interest, data and threshold parameters change sign. 
 
if( tail == 2) 
 temp = zeros(size(x)); 
 for i = 1:npts 
  temp(i) = -x(i);    
 end         
 for i = 1:npts 
  x(i) = temp(npts - i + 1); 
 end 
 temp = nl; 
 nl = npts - nh + 1; 
 nh = npts - temp + 1; 
 lambda = -lambda; 
end 
 
% If necessary transform Weibull and Frechet data to Gumbel data. 
 
switch distribution 
case 2 
 for i=nl:nh 
  if( lambda > x(i) ) 
   error(' ! Location parameter (Weibull) incorrect '); 
  end 
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  x(i) = log( x(i) - lambda ); 
 end 
case 3 
 for i=nl:nh 
  if( lambda <= x(i) ) 
   error(' ! Location parameter (Frechet) incorrect '); 
  end 
  x(i) = - log( lambda - x(i) ); 
 end 
end 
 
% Now the data is Gumbel, normalise (standardise). 
 
xbar = mean(x(nl:nh)); 
sigma = std(x(nl:nh)); 
x = (x - xbar)/sigma; 
 
% At this point, we appear to need to fix P0, which are - for Gumbel, the 
location  
% and scale parameters, and for the other two distributions, the scale and 
shape 
% parameters. 
 
if( method < 7 )      % For any method other than moments, get  
 for i=1:2       % initial estimates of parameters, transform 
  switch i       % to Gumbel paper and we get a straight 
  case 1       % line. Split the range in half and  
   ns1 = nl;      % sum over the data points in each half 
   ns2 = fix( (nl + nh)/2 );  % This gives two equations, which can be  
  case 2       % solved for the gradient and intercept 
   ns1 = fix( (nl + nh)/2 + 1 ); % of the line. Why not use least-squares? 
   ns2 = nh; 
  end 
  s1 = 0.0; 
  s2 = 0.0; 
  for k=ns1:ns2 
   temp = 1 - (k - 0.5)/npts; % Plotting position 2 is used. 
   s1 = s1 + log( -log(temp) ); 
   s2 = s2 + x(k); 
  end 
  switch i 
  case 1 
   a11 = ns2 - ns1 + 1; 
   a12 = s1; 
   c1 = s2; 
  case 2 
   a21 = ns2 - ns1 + 1; 
   a22 = s1; 
   c2 = s2; 
  end 
 end 
 de = a11*a22 - a21*a12; 
 p0(1) = (c1*a22 - c2*a12)/de; 
 p0(2) = (c2*a11 - c1*a21)/de; 
else 
 p0(2) = sqrt(6.0)/pi; % For method of moments, just use the formulae from 
 p0(1) = 0.5772*p0(2); % the book - Table 5.1. 
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 % All we need to do now is put the scale back in the data and transform 
back. 
  
 [lambda, delta, beta] = 
transform_back(p0,xbar,sigma,tail,distribution,lambda); 
end 
 
% If we are interested in the percentile method, we have enough now. 
 
if( method == 6 ) 
 [lambda, delta, beta] = 
transform_back(p0,xbar,sigma,tail,distribution,lambda); 
end 
  
% Keep on with methods 1 to 5. Generate vector of plotting positions. 
 
if( method < 6 ) 
 p = zeros(npts,1); 
 
 for i=1:npts 
  switch position 
  case 1 
   p(i) = i/(npts + 1); 
  case 2 
   p(i) = (i - 0.5)/npts; 
  case 3 
   p(i) = (i - 0.375)/(npts + 0.25); 
  case 4 
   p(i) = (i - 0.44)/(npts + 0.12); 
  end 
 end 
 
 % If weights are needed, generate them. 
 
 if( method < 4 ) 
  weights = zeros(npts,1); 
  for i=nl:nh 
   switch method 
   case 1 
   weights(i) = 1.0; 
   case 2 
   weights(i) = 1/(p(i)*p(i)); 
   case 3 
   weights(i) = 1.0/(p(i)*(1.0 - p(i))); 
   end 
  end 
 end 
 
 % Optimisation step. 
 
 options = optimset('LargeScale','off'); 
 
 popt = zeros(size(p0)); 
 
 popt = fminunc('evaluate',p0,options,npts,x,p,method,nl,nh,weights); 
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 [lambda, delta, beta] = 
transform_back(popt,xbar,sigma,tail,distribution,lambda); 
end 
 
% If plotting is required, do it. 
 
if( plot_flag ~= 0 ) 
  
 if( method > 5 ) 
  for i=1:npts 
   switch position 
   case 1 
   p(i) = i/(npts + 1); 
   case 2 
   p(i) = (i - 0.5)/npts; 
   case 3 
   p(i) = (i - 0.375)/(npts + 0.25); 
   case 4 
   p(i) = (i - 0.44)/(npts + 0.12); 
   end 
  end 
 end 
  
 predict_y = zeros(size(x)); 
 switch tail 
 case 1 
  switch distribution 
  case 1 
   predict_y = 1.0 - exp( - exp( (samples - lambda)/delta )); 
  case 2 
   for i=1:npts 
   if( samples(i) >= lambda ) 
    predict_y(i) = 1.0 - exp( - ((samples(i) - lambda)/delta)^beta ); 
   else 
    predict_y(i) = 0.0; 
   end 
   end 
  case 3 
   for i=1:npts 
   if( samples(i) <= lambda ) 
    predict_y(i) = 1.0 - exp( - (delta/(lambda - samples(i)))^beta ); 
   else 
    predict_y(i) = 1.0; 
   end 
   end 
  end 
 case 2 
  switch distribution 
  case 1  
   predict_y = exp(-exp( -(samples - lambda)/delta) ); 
  case 2 
   for i=1:npts 
   if( samples(i) <= lambda ) 
    predict_y(i) = exp( -((lambda - samples(i))/delta)^beta ); 
   else 
    predict_y(i) = 1.0; 
   end 
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   end 
  case 3 
   for i=1:npts 
   if( samples(i) >= lambda ) 
    predict_y(i) = exp( -(delta/(samples(i) - lambda))^beta ); 
   else 
    predict_y(i) = 0.0; 
   end 
   end 
  end 
 end 
  
 plot(samples,p,'k',samples(nlp:nhp),p(nlp:nhp),'ko',samples,predict_y,'r'); 
 xlabel('Order Statistics'); 
 ylabel('Cumulative Distribution Function'); 
 switch distribution 
 case 1 
  title('Gumbel distribution curve-fit'); 
 case 2 
  title('Weibull distribution curve-fit'); 
 case 3 
  title('Frechet distribution curve-fit'); 
 end 
 legend('Empirical CDF','Points used','Fitted CDF',0); 
end 
  
return; 
   
% End of function ESTIMATE. 
 
 
function [lambda, delta, beta] = 
transform_back(p0,xbar,sigma,tail,distribution,lambda) 
 
p0(1) = xbar + sigma*p0(1); 
if( tail == 2 ) 
 lambda = -lambda; 
 p0(1) = -p0(1); 
end 
p0(2) = sigma*p0(2); 
 
switch distribution 
 case 1 
  lambda = p0(1); 
  delta = p0(2); 
  beta = 0.0; 
 case 2 
  if( tail == 1 )    % This step is necessary or appears to necessary 
   p0(1) = exp( p0(1) );  % because of the transformation to Gumbel  
  else       % coordinates. The effect appears to be different 
   p0(1) = exp( - p0(1) ); % for left and right tails. Later on, I'll get my 
  end       % head round this and write a better comment. 
  p0(2) = 1/p0(2); 
   
  delta = p0(1); 
  beta = p0(2); 
 case 3 
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  if( tail == 1 )    % Likewise here. 
   p0(1) = exp( - p0(1) ); 
  else 
   p0(1) = exp( p0(1) ); 
  end 
  p0(2) = 1/p0(2); 
   
  delta = p0(1); 
  beta = p0(2); 
end 
 
return; 
% End of function TRANSFORM BACK. 
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A.5. evaluate 

This function is called by estimate. Its only purpose is to provide values for the objective 
function for the optimization in estimate. It is not intended for independent use. 
 
function fp = evaluate(par,npts,x,p,method,nl,nh,weights) 
 
if( par(2) <= 0 ) 
 fp = -1.7e30; 
 return; 
end 
 
fp = 0.0; 
 
if( method < 5 ) 
 for i=nl:nh  
  p1 = 1.0 - exp( - exp( (x(i) - par(1))/par(2) ));   
  fp = fp + ( p(i) - p1 )*( p(i) - p1)*weights(i); 
 end 
else 
 xl = x(nl); 
 xh = x(nh); 
 for i=nl:nh 
  p1 = (par(1) - x(i))/par(2); 
  fp = fp + p1 + exp(-p1); 
 end 
 p1 = 1.0 - exp(- exp( (xl - par(1))/par(2) )); 
 if( p1 == 0.0 ) 
  fp = -1.7e30; 
  return; 
 end 
 p2 = log( par(2) ); 
 p3 = exp( (xh - par(1))/par(2) ); 
 fp = - fp + (nl - nh - 1)*p2 - (npts - nh)*p3; 
 fp = fp + (nl - 1)*log(p1); 
 fp = - fp; % We want to minimise - the likelihood. 
end 
 
return; 
 
% End of function EVALUATE. 
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A.6. extract_max 

This is a simple function that moves a window of a given size over a signal from the parent 

distribution and extracts the maximum for each window. A trivial modification would allow 

extraction of minima. 

 
function max_array = extract_max(data,nwin) 
 
npts=length(data); 
 
nstep=npts/nwin; 
 
max_array=zeros([1,nstep]); 
 
for i=1:nstep 
 max_array(i) = max(data( (i-1)*nwin+1 : i*nwin )); 
end 
 
return; 
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Appendix B: AR-ARX Time History Analysis 
For Structural Health Monitoring (SHM) strategies that rely on vibration response 

measurements, the ability to normalize the measured data with respect to varying operational and 

environmental conditions is essential if one is to avoid false-positive indication of damage. 

Examples of common normalization procedure include normalizing the response measurements 

by the measured inputs as is commonly done when extracting modal parameters. When 

environmental cycles influence the measured data, a temporal normalization scheme may be 

employed. These strategies for SHM data normalization fall into two general classes: (1). Those 

employed when measures of the varying environmental and operational parameters are available. 

(2). Those employed when measures of the varying environmental and operational conditions are 

not available. This Appendix B focus on addressing the latter case.  

The data normalization procedure begins by assuming that a “pool” of signals is acquired 

from various unknown operational and environmental conditions, but from a known structural 

condition of the system. The ability of this procedure to normalize the data will be directly 

dependent on this pool being representative of data measured in as many varying environmental 

and operational conditions as possible. In this report, multiple time series are recorded from the 

undamaged test structure  at different input force levels  and input frequencies. The collection of 

these time series is called “the reference database.” 

A two-stage prediction model, combining Auto-Regressive (AR) model and Auto-Regressive 

model with exogenous inputs (ARX), is employed to compute the damage-sensitive feature. In 

this case the damage-sensitive feature is the residual error between the prediction model and 

measured time series. First, all time signals are standardized prior to fitting an AR model such 

that: 
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where x̂  is the standardized signal, xµ  and xσ  are the mean and standard deviation of x, 

respectively. This standardization procedure is applied to all signals employed in this study. 

(However, for simplicity, x is used to denote x̂  hereafter.)  
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For each time series x(t) in the reference database, an AR model with p auto-regressive terms 

is constructed. An AR(p) model can be written as: 
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This step is repeated for all signals in the reference database. The AR order is set based on a 

partial auto-correlation analysis. 

Employing a new segment y(t) obtained from unknown structural condition of the system, 

repeat the previous step. Here the new segment y(t) has the same length as the signal x(t): 
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Then, the signal segment x(t) “closest” to the new signal block y(t) is defined as the one that 

minimizes the following difference of AR coefficients:  

Difference = ∑
=
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This data normalization is a procedure to select the previously recorded time signal from the 

reference database, which is recorded under operation and/or environmental conditions closest to 

that of the newly obtained signal. If the new signal block is obtained from an operational 

condition close to one of the reference signal segments and there has been no structural 

deterioration or damage to the system, the dynamic characteristics (in this case, the AR 

coefficients) of the new signal should be similar or “closest” to those of the reference signal 

based on the Euclidean distance measure in Equation B-4.  

When a time prediction model is constructed from the selected reference signal, this 

prediction model should be able to appropriately predict the new signal if the new signal is 

“close” to the reference signal. On the other hand, if the new signal were recorded under a 

structural condition different from the conditions where reference signals were obtained, the 
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prediction model estimated from even the “closest” signal in the reference database would not 

reproduce the new signal well.  

For the construction of a two-stage prediction model proposed in this study, it is assumed that 

the error between the measurement and the prediction obtained by the AR model )(tex  in 

Equation B-2 is mainly caused by the unknown external input. Based on this assumption, an 

ARX model is employed to reconstruct the input/output relationship between )(tex  and )(tx  
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where )(txε  is the residual error after fitting the ARX(a,b) model to )(tex  and )(tx  pair. The 

feature for damage diagnosis will later be related to this quantity, )(txε . Note that this AR-ARX 

modeling is similar to a linear approximation method of an Auto-Regressive Moving-Average 

(ARMA) model. It is suggested to keep the sum of a and b smaller than p ( pba ≤+ ). Although 

the a and b values of the ARX model are set rather arbitrarily, similar results are obtained for 

different combinations of a and b values as long as the sum of a and b is kept smaller than p. 

Next, it is investigated how well this ARX(a,b) model estimated in Equation B-5 reproduces 

the input/output relationship of )(tey  and )(ty : 

∑∑
==

−−−−=
b

j
yj

a

i
iy jteitytyt

01
)()()()( βαε  B-6 

where )(tey  is considered to be an approximation of the system input estimated from B-3. 

Again, note that the iα  and jβ  coefficients are associated with )(tx  and obtained from Equation 

B-5. Therefore, if the ARX model obtained from the reference signal block )(tx  and )(tex  pair 

were not a good representative of the newly obtained signal segment )(ty  and )(tey  pair, there 

would be a significant change in the standard deviation of the residual error, )(tyε , compared to 

that of )(txε .  
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